3w^2+145w+8=0

Simple and best practice solution for 3w^2+145w+8=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3w^2+145w+8=0 equation:


Simplifying
3w2 + 145w + 8 = 0

Reorder the terms:
8 + 145w + 3w2 = 0

Solving
8 + 145w + 3w2 = 0

Solving for variable 'w'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
2.666666667 + 48.33333333w + w2 = 0

Move the constant term to the right:

Add '-2.666666667' to each side of the equation.
2.666666667 + 48.33333333w + -2.666666667 + w2 = 0 + -2.666666667

Reorder the terms:
2.666666667 + -2.666666667 + 48.33333333w + w2 = 0 + -2.666666667

Combine like terms: 2.666666667 + -2.666666667 = 0.000000000
0.000000000 + 48.33333333w + w2 = 0 + -2.666666667
48.33333333w + w2 = 0 + -2.666666667

Combine like terms: 0 + -2.666666667 = -2.666666667
48.33333333w + w2 = -2.666666667

The w term is 48.33333333w.  Take half its coefficient (24.16666667).
Square it (584.0277779) and add it to both sides.

Add '584.0277779' to each side of the equation.
48.33333333w + 584.0277779 + w2 = -2.666666667 + 584.0277779

Reorder the terms:
584.0277779 + 48.33333333w + w2 = -2.666666667 + 584.0277779

Combine like terms: -2.666666667 + 584.0277779 = 581.361111233
584.0277779 + 48.33333333w + w2 = 581.361111233

Factor a perfect square on the left side:
(w + 24.16666667)(w + 24.16666667) = 581.361111233

Calculate the square root of the right side: 24.111431132

Break this problem into two subproblems by setting 
(w + 24.16666667) equal to 24.111431132 and -24.111431132.

Subproblem 1

w + 24.16666667 = 24.111431132 Simplifying w + 24.16666667 = 24.111431132 Reorder the terms: 24.16666667 + w = 24.111431132 Solving 24.16666667 + w = 24.111431132 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-24.16666667' to each side of the equation. 24.16666667 + -24.16666667 + w = 24.111431132 + -24.16666667 Combine like terms: 24.16666667 + -24.16666667 = 0.00000000 0.00000000 + w = 24.111431132 + -24.16666667 w = 24.111431132 + -24.16666667 Combine like terms: 24.111431132 + -24.16666667 = -0.055235538 w = -0.055235538 Simplifying w = -0.055235538

Subproblem 2

w + 24.16666667 = -24.111431132 Simplifying w + 24.16666667 = -24.111431132 Reorder the terms: 24.16666667 + w = -24.111431132 Solving 24.16666667 + w = -24.111431132 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-24.16666667' to each side of the equation. 24.16666667 + -24.16666667 + w = -24.111431132 + -24.16666667 Combine like terms: 24.16666667 + -24.16666667 = 0.00000000 0.00000000 + w = -24.111431132 + -24.16666667 w = -24.111431132 + -24.16666667 Combine like terms: -24.111431132 + -24.16666667 = -48.278097802 w = -48.278097802 Simplifying w = -48.278097802

Solution

The solution to the problem is based on the solutions from the subproblems. w = {-0.055235538, -48.278097802}

See similar equations:

| 7(4x-9)=-26+6x | | 4k+12=3m-31 | | 99m=4n-35 | | 8x+11.1=27.9 | | 7+3x=2x+2 | | 9y=2y+33 | | -12y-10=-6y+24 | | 4cos^2(x)+2cos(x)+2sqrt(2cos(x))+sqrt(2)=0 | | 6(7x+6)=456 | | x(1.5x)=24 | | 0.3+3.7x=7.7 | | 6w+2(w-1)=14-(w+1) | | x-10=5+5 | | x=w+(w+4) | | 0/36+6.5= | | x(3x)=24 | | 40=9x-5 | | 10-2lnx=7 | | 5(x-3)6=5x-10 | | (-3y^2+2y+1)= | | 4x-(5-7X)-6=11 | | .18(18)+.02x=.06(6+x) | | -6x+3=-51 | | 1.4+0.2x=0.5x-3.4 | | 9=9+5x | | (2+i)+(-3+9i)= | | (5y^2-7y+6)= | | 4(2x-2)=6(3x+2) | | h=-0.2d^2+2.2d+12 | | 7x+9x+11=180 | | log(x-2)=log(3x+7) | | 16x+95=170 |

Equations solver categories